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Abstract 

In neutron protein crystallography, the use of position- 
sensitive detectors controlled by a modern data- 
acquisition system permits new approaches to data- 
collection strategies. Instead of dealing with con- 
ventional scans, like the 0-20 scan, that provide an 
integrated intensity as a function of a rotational 
parameter, the computer-linked counter can be used to 
produce a three-dimensional reflection profile. As the 
crystal steps (AoJ) through a reflection, the observed 
data for each step are stored in an external memory as 
a function of extent in 20 and height (y) of a reflection. 
In this space, the reflection will be a three-dimensional 
distribution with dimensions determined by such basic 
geometrical conditions as A2, crystal size, mosaic 
spread, counter-resolution, and beam-collimation 
parameters. Knowledge of the interaction of these basic 
parameters will allow the design of optimal beam optics 
and will permit the delineation of the reflection from the 
background and permit, therefore, an accurate intensity 
determination. 

Introduction 

It has long been recognized that neutrons provide an 
excellent probe to use in analyzing the atomic and 
molecular structure of proteins (Schoenborn, 1969; 
Hanson & Schoenborn, 1981) and other large com- 
plexes like nerve membranes, retinal rods, ribosomes, 
viruses, chromatin, etc. (Schindler, Langer, Engelman 
& Moore, 1979; Jacrot, 1976). To improve the 
utilization of neutrons, position-sensitive detectors 
(Alberi, Fischer, Radeka, Rogers & Schoenborn, 1975) 
and efficient monochromators (Saxena & Schoenborn, 
1977) have been developed to counter the effect of the 
relatively low thermal neutron flux available even at the 
most optimum high-flux beam reactors. The develop- 
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ment of the position-sensitive 3He counters with their 
limited resolution of ~3 mm and the development of 
multilayer monochromators with their inherent large 
but adjustable A2 have prompted this re-evaluation of 
data collection techniques. For biological specimens, 
which are often weak scatterers, the accurate in- 
tegration of reflections is particularly important 
because of the large background produced by the 
significant incoherent scattering of hydrogen atoms. 

Statistically accurate intensities are particularly 
important in neutron protein crystallographic investi- 
gations that attempt to localize H atoms and H/D 
exchange. This task involves the evaluation of approxi- 
mately twice as many atoms as the equivalent X-ray 
analysis that determines only carbon-, nitrogen- and 
oxygen-atom locations. 

The most efficient strategy for collecting three- 
dimensional neutron structure-factor data depends on 
the unit-cell size, the required resolution, the available 
detector, and the neutron flux. An understanding of the 
properties that cause particular peak shapes is needed 
for the precise integration of peaks and the design of 
efficient neutron spectrometer optics to maximize the 
diffraction intensity. The determination of the reflection 
shape presented in this paper is based on the normal 
beam geometry used in conjunction with linear or 
two-dimensional position-sensitive detectors. The spot 
shape is dependent on the order of the reflection 
(reciprocal-lattice spacing, e.g. 2 sin 0/2), the beam 
divergence e, the monochromator lattice spacing and 
resultant wavelength spread A2, the crystal size, crystal 
mosaic #, and counter resolution. The use of two- 
dimensional detectors for X-ray protein crystallog- 
raphy has been described by others, notably by Xuong, 
Freer, Hamlin, Nielson & Vernon (1978). The X-ray 
case is simpler, the signal is larger, the background is 
smaller and spot smearing effects due to A2, counter 
resolutions and crystal size are negligible. In this paper 
the properties of the neutron case are considered. 

A number of authors (Cooper & Nathans, 1968; 
Werner, 1971; Cagliotti & Ricci, 1962; Dachs, 1961; 
Willis, 1960) have described the resolution function 
arising from the neutron diffraction geometry in terms 
of Gaussian convolution for conventional co or o~-20 
scans. In this paper, a numerical approach is presented 
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to calculate the reflection shape as observed on a 
position-sensitive detector and to highlight individually 
the smearing effect of the different contributors, which 
may not always be Gaussian. Note that in the normal 
beam method selected, which is suitable for use with 
2D counters, reflections are collected in layer lines. 

The shape of  a reflection 

Fig. 1 depicts the schematic diagram of the experi- 
mental setup used. The high-flux beam reactor at BNL 
uses enriched uranium with D20 moderation to produce 
a high flux of thermal neutrons with the maximum 
wavelength flux distribution peaking at ~ 1.1 A. White 
radiation from the moderator region is collimated by 
the beam plug, monochromatized, and collimated again 
before hitting the crystal; no collimation exists between 
the crystal and the position-sensitive detector. The 
crystals are mounted in such a way that their most 
densely populated reciprocal-lattice planes are horizon- 
tal, to coincide with the high-resolution direction of the 
two-dimensional counter. The crystals are then rotated 
in small Aco steps (~0.05°),  the detector remaining 
stationary. For a given reflection, every co step results 
in a 20--y profile, and reflections centered at 20hk t and 
cohkt are stored as three-dimensional arrays, as shown in 
Fig. 2. This three-dimensional array is summed along 
the vertical y direction to produce an co-20 projection, 
since changes in y are small and monotonic. For 
higher-layer lines the horizontal axis 20' is the 
projection of 20. The use of a two-dimensional 
reflection representation simplifies the discussion some- 
what and reduces the computational effort, which is 
particularly desirable for on-line calculations. The 

traction of background the shape (extent) and orien- 
tation of the reflection have to be known. Usually, a 
reflection is integrated by adding all elements within a 
rectangular area that contains the peak and subtracting 
background scaled to the equivalent area. 

The variance of the peak intensity is the sum of the 
total intensity (peak and background) within the 
integration area and the variance of the background 
scaled to the peak area. With n elements under the peak 
and m elements in the background, the scale is given by 
n2/m 2. This variance is reduced if the variance of the 
scaled background is minimized with m > n and the 
chosen peak area is no larger than the actual diffracted 
beam. 

The analysis of reflection shapes described below 
allows the delineation of the peak shapes to minimize 
the area of integration and, therefore, reduces the 
statistical error of reflections. A further reduction in 
counting statistical error can be achieved by reducing 
the peak size itself by optimizing the diffraction 
conditions. The following analysis describes the magni- 
tude of the reflection broadening effects of parameters 
like beam divergence, crystal mosaic, counter 
resolutions, monochromator spacing and wavelength 
bandwidth AL 

One method of finding peak shapes was proposed by 
Spencer & Kossiakoff (1980). This involves the use of 
a filtering technique to determine the reflection shape 
from the data. Sjolin & Wlodawer (1980) have further 
modified and used this procedure for the analysis of 
X-ray and neutron data. It should, however, be noted 
that the ellipsoid tilt angle, t ,  used in their approach 
depends strongly on A~. and the counter resolution. The 

reflection within this array is approximately ellipsoidal 
and can be characterized by an inclination angle fl and 
major and minor axes. The orientation and shape of 
such depicted reflections vary as a function of hkl. To 
obtain integrated intensities with an accurate sub- 
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Fig. 1. Schematic drawing of the protein crystallography station at axis, perpendicular to the beam and parallel to the vertical axis. 
the BNL high-flux beam reactor (HFBR). Unit step in 09 and 20 = 0.07 °. 
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orientation angle fl described by Wonacott  (1977) for 
X-ray data is therefore not applicable to neutron data. 
An alternative approach is presented here, based on the 
determination of the theoretical reflection shape from 
the basic diffraction condition applied for use with 
two-dimensional detectors. 

(a) The effect o f  beam divergence 

A finite beam diffracted from a monochromator  with 
a mosaic fl will have a component that is purely 
monochromatic with a beam divergence e. The effect of 
this component on the reflection profile is easily 
depicted in an Ewald-sphere construction. A divergent 
source beam will produce two boundary Ewald spheres 
of the same radius (r = 1/2) inclined at an angle e. A 
reflection with a given reciprocal-lattice vector v will be 
in a diffraction position (Fig. 3) as it moves from A to 
B; the crystal rotates around an axis perpendicular to 
the plane of the drawing by angle Aco. From equal 
triangles, it is easily seen that Aco = e and, in an o9--20 
plot, the effect of beam divergence will produce an 
intensity distribution along a line oriented at an angle 
a = 45 o; this intensity distribution can usually be taken 
as a Gaussian, although, depending on the collimation 
used, it may have a trapezoidal shape. 

(b) The effect of  crystal mosaic 

The effect of the crystal mosaic on the reflection 
profile is again easily described by a simple Ewald- 
sphere construction (Fig. 4). It is seen that, on rotation 
of the crystal, crystallites disordered by an angle 
produce a reflection during the rotation interval Aco, 
with Aco = /~ being the width of the mosaic dis- 
orientation. In the co-20 graph, this produces intensity 
along the co axis (a = 90 ° ) with an intensity 
distribution that is often Gaussian. For higher layer 
lines, the effective mosaic is still mainly observed as an 
intensity distribution as a function of co, (~t ~ 90 °) but 

E W A L D  C I R C L E  

~ r = l i d  

• -.JL a = 4 5 °  

(2001 

Fig. 3. Ewald-sphere construction describing the effect of beam 
divergence for a given 2 on the diffraction process. The 
reciprocal-lattice vector v = lid is in diffraction condition for the 
rotational width Ao) (heavy line) producing diffraction over the 
angular width A20 centered on the Bragg angle 200. On the right, 
the resulting intensity distribution (heavy line) is mapped as a 
function of the crystal rotation co and the diffraction angle 20. 

is larger by the fraction v/v', where v is the length of the 
reciprocal-lattice vector and v' is the projection of that 
vector perpendicular to the rotation axis, e.g. v' = 
(lyE __ T2)1/2 where v = reciprocal-layer-line height. In a 
monochromatic beam with divergence, the effect of the 
mosaic contribution occurs for every beam direction, 
e.g. the effect of the mosaic is applied to every point 
between A and B in Fig. 3. This produces a con- 
volution (Lipson & Taylor, 1958) of the two intensity 
functions, with the effect of beam divergence localized 
at ~ = 45 ° and the mosaic effect at tx = 90 °. For this 
example, both probability functions are taken to be 
Gaussian; in the numerical approach used any distri- 
bution can, however, be used. 

For the beam divergence effect: 

1 exp [ -  1/AcotE]  P(w) - 
2 t ] I 

with A20 = Aco; and for the mosaic distribution: 

1 
P(ACO, A20 = 0) - - -  exp 

In practice, the probabilities are calculated for a range 
in co in small steps (Am ~ 0.05 °) to a cutofflimit where 
P < 0.001. These two functions are then numerically 
convoluted to produce a two-dimensional (o9--20) 
probability density distribution. In general, contours of 
equal probability, P,.,, are ellipsoidal in shape with the 
major axis inclined at an angle between 45 and 90 ° 
(Fig. 5a), depending on the relative magnitudes of t and 

(c) The effect of  crystal size 

The finite width of a crystal results in the super- 
position of the probability ellipse P , , ,  at every point of 
the effective crystal width. In practice, for the oy--20 
representation, this results in a convolution of P , ,  with 
a square wave in the A20 direction. The resultant 
convolution P~ is shown in Fig. 5(b) for a crystal width 

~ / ~  ~=90° 

Fig. 4. Ewald-sphere construction describing the effect of the 
crystal mosaic for a given wavelength A. The reciprocal-lattice 
vectors v distributed within angular width # produce diffraction at 
the Bragg angle 28 o over the rotational width Ao) = #. 
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of 2 mm. If the crystal is very asymmetric, the effective 
width of this function will vary with the crystal rotation 
0 3 .  

treated as one effect. Proper integration of reflections in 
the 09-20 space minimizes such overlap, requiring, 
however, storage of each diffraction profile as a 
function of o9 and 20. 

(d) The effect o f  counter resolution 

Position-sensitive detectors with their limited 
resolution produce further reflection smearing. Most of 
the currently existing position-sensitive detectors have 
resolutions of 3 to 10 mm, and only recently, with the 
development of a new readout system, has it become 
possible to produce position-sensitive detectors with 
resolutions less than 2 mm. The detector smearing 
along the vertical axis is of no concern here, since data 
represented in the o9--20 space have been integrated 
along that direction. Along the horizontal direction 
parallel to the 20 axis, the limited resolution of the 
detector gives rise to a detector smearing which is 
Gaussian and broadens the peak in the A20 direction. 

1 [ k / Po(Ao9 = 0,A20) - V/~------ ~ exp - 
l 

This probability distribution is again evaluated 
numerically and is then convoluted with the prob- 
ability distribution PT(Aog,A20). The resultant distri- 
bution is shown in Fig. 5(c). This large spot smearing 
would significantly increase reflection overlap if the 
conventional 20 integration scheme were used. The 
profile broadening due to the crystal size and that due 
to the limited detector resolution can in many cases be 
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Fig. 5. Calculated reflection shape as a function of diffraction angle 
20 and crystal rotation o) showing the effects of: top left: beam 
divergence and crystal mosaicity; top right: the added effect of 
the crystal size (2 mm); lower left: the added effect of the 
detector resolution (3 mm); lower right: the effect of the 
wavelength bandwidth A2. 

(e) The effect o f  A2 

The above considerations apply more or less directly 
to the X-ray case, although the resolution for X-ray 
position-sensitive detectors is much better (~0-3 mm). 
Proper integration of the reflection in the o9--20 space 
should give intensities which are physically more 
realistic. The X-ray case has been described by 
Mathieson (1982) for single-crystal diffractometry 
without a monochromator. In the neutron case, the 
effect of A2 has to be considered, since the wavelength 
bandwidth A2 is large and is often deliberately 
increased to improve flux. 

The neutron source has a finite size and produces 
radiation with a divergence e determined by the 
collimation; this beam divergence and the mosaic of the 
monochromator result in a diffracted beam with a given 
wavelength bandwidth A2. A2 is calculated from the 
differentiated Bragg equation and A2 = 2A0cot 0 M, 
where AO = e is the beam divergence and O. is the 
Bragg angle of the monochromator. With the mono- 
chromator set for a wavelength 2 with a Bragg angle 
0 M, the extreme path of the neutrons in the horizontal 
plane are then at angles 0 M + AO and 0 M - AO. These 
extreme rays correspond, therefore, to wavelength 
2ml n = 2(1 - A0cot Ou) and 2ma x = 4(1 + A0cot OM). 
The monochromator, therefore, sorts out the wave- 
length according to angle with the longer wavelength 
emerging at higher angles. The effect of A2 on the 
diffraction condition is again depicted by an Ewald- 
sphere construction (Fig. 6). In this case, the two 
limiting spheres have radii r 1 = 1/(4 - A2) and r 3 = 
1/(4 + A2). The equatorial circles will intersect at two 
points, the origin of the reciprocal lattice at 0 and the 
point M, the so-called focusing position at the end of 
the reciprocal-lattice vector v,,, of the monochromator 
spacing (Arndt & Willis, 1966). In this construction, 
the required diffraction conditions are satisfied for all 
points in the shaded area. A reciprocal-lattice vector v 
rotating perpendicular to the rotation axis o) located at 
0 will produce diffraction from point P1 to P3; during 
the rotation Aog, the resulting rays will diverge at an 
angle A20. 

The polychromaticity of the beam results, therefore, 
in the spreading of the intensity of an ideal reflection 
along a line of length l inclined at an angle a. The 
magnitude of the length l and the angle depend on the 
reciprocal-vector length (e.g. hkl) and the basic 
diffraction condition. This diffraction behavior is again 
best depicted in the 09--20 space (Fig. 6) with a 
reflection of length l inclined at an angle a. The vector v 
crosses the circle r I and r 3 at rotation angles (J)l and o93. 
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Note that the origins of the Ewald circles are not 
concentric. Therefore, in a numerical approach, the 
vector v is rotated along oo, and the distances (d) from 
the end of vector v to the respective Ewald centers (C1 
o r  C3) are calculated. Intercepts occur when d 1 = v 1 
and d 3 = v s. The origin of the coordinate system is at 
C 2, the center of the Ewald sphere for the average value 
of L 

For given intercepts PI and P3,  the respective 
diffraction angles (281 and 283) are calculated. Scatter- 
ing angles are measured with respect to the origin of the 
mean Ewald sphere. While rotating co, a reflection will 
be observed moving from 283 to 281 as depicted on the 
right side of Fig. 6. The reflection center occurs at the 
Bragg angle for the mean wavelength. In Fig. 7, the 
reflection length and orientation due to the effects of A2 
only are presented as a function of reciprocal length v. 
The data in Fig. 7(a) are from calculations performed 
for a graphite monochromator set at 8 M = 13 ° for a 
wavelength of 1-5 ,A and a beam divergence of 0.04 ° 
with A2 = 0-005 A. Fig. 7(b) shows the same data but 
for a multilayer monochromator used for small-angle 
diffraction with 2 = 5.4/~, 8 M = 2.1 °, and a beam 
divergence of 0.1 o with a resulting A2 of 0.26 A. 

Inspection of Fig. 6 shows that special conditions 
arise for v = v~ and v = 0.5 vM" 

at v = 0.5v M, A 2 8 =  0 ° and ct = - 9 0 ° ;  

at v=  v M, A w  = 0 ° and a = 0 °. 

The intensity distribution Paa due to A~, is assumed to 
be Gaussian. Since this intensity distribution reflects 
only the effect of A~,, the effects due to (a) beam 
divergence, (b) crystal mosaic, (c) crystal size, and (d) 
counter resolution have to be applied to every point 
over the reflection length l. Note that the beam 
divergence c affects the reflection smearing twice: (1) as 
discussed in § (a) where the effect of beam divergence 
for a given wavelength 2 is discussed; and (2) the effect 
of beam divergence on the magnitude of the wave- 
length bandwidth A2. In practice, this convolution is 
again performed numerically in the conventional way 
by multiplying P with Paa for every point over the 
length l and then adding all the respective contri- 
butions to produce the final intensity distribution 
PR(oo~ A20); Aco = 0 and A28 = 0 are the conditions for 
the mean Bragg peak. Fig. 5 shows the effect of the 
successive convolutions while Fig. 8 depicts the 
spot-shape variation as a function of reciprocal-lattice 
length v = 2 sin 8/2 .  

x e 0 a A% 2e 

Xmox  I 

Fig. 6. Ewald-sphere construction showing the width of a reflection 
... due to d2, the wavelength bandwidth. The limiting spheres for the 

smallest (~'rnin) and the largest wavelength (2max) are drawn. 
Diffraction occurs at any point in the shaded regions. The large 
shaded region at the top is due to diffraction in the 'antiparallel' 
mode (Arndt & Willis, 1966). The shaded region on the bottom 
represents diffraction in the parallel or focusing mode. The vector 
length v M is given by the lattice spacing of the monochromator 
selecting the radiation. On rotation, the reciprocal-lattice vector v 
(of the sample) will be in reflecting position from P~ to P3 over the 
rotational width Ao9 and will produce diffraction over an angle 
A28..4o9 and '42~ vary as a function of reciprocal-lattice length v 
and layer-line height r (r is perpendicular to the plane of the 
drawing). The diffraction process is mapped on the right side as a 
representative function of o9 and 28. ~t is the angle formed 
between the diffraction line and the horizontal axis (2~). The 
reflection length l is the length of the distribution at half-height 
measured in degrees. 
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Fig. 7. The effect of A2 on the inclination a and the reflection length 

I in the oo--20 space as a function of reciprocal-lattice length 
v = 2 sin 0/2 (see Fig. 6). (a) For a graphite monochromator with 
8 M = 13.4 ° . (b) For a multilayer monochromator with 
OM= 2.1 ° . 
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Table 1. Observed and calculated spot-shape parameters for some well characterized test crystals 

The axes lengths are calculated from the second moments of the distribution and are equivalent to the half-width at half-height. For 
data delineation purposes the full half-length of the axes are determined to include 99.9% of the intensity. These lengths are ---3 times the 
length at half-height. For the alumina and germanium data the final grid size is 0.16 ° in A~o and A20, for KBr Ato = A2 0 -  0.08 °. These 
grid intervals are determined by the final array size of 100 x 100 elements that encloses the full reflection. 

Major-axis Minor-axis 
Monochromator Beam Crystal Angle ~ length length 

setting divergence mosaic 2 v Calc. Obs. Calc. Obs. Calc. Obs. 
Crystal (o) (o) (o) (A) (A -1) +3 ° +0.30 ° +0-i o 

Alumina 2.1" 0.2 0.1 5.4 0.08 28 25 1.3 1.2 0.1 0-1 
KBr 13.47 0.05 0.15 1.5 0.35 2 0 0.5 0.6 0.3 0.4 

0.71 7 5 0.8 0.8 0.3 0.4 
Germanium 13.47 0.08 0.001 1.5 0.30 6 4 1.0 0.9 0.3 0.2 

0.50 8 9 1.4 1.8 0.4 0-5 
0.59 16 12 1.8 1.5 0-3 0-3 

* As in Fig. 7(b) for a multilayer monochromator. 
? As in Fig. 7(a) for a graphite monochromator. 

To delineate the shape of  the reflection for accurate  
integration, the spot shape is described by minor  and 
major  ellipsoidal axes with the major  axis inclined by 
an angle fl towards  the A20 coordinate  axis (Table 1). 
These parameters  are best calculated from the second 
moments  of  the calculated intensity distribution as 
derived by Lambe (1958). 

x= L 5 5 , ~  

0 M : 1 5 . 4 *  

;,' = 0.1 

i i 
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- 1.8 ° 20 
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~ = 0 . 3  

+ 1.8" 

v=O.~ 

# 

v = 0 . 4  

u = 0 . 6  v=O.8 
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Fig. 8. The combined effect of crystal mosaicity, beam divergence 
and A2 on the shape of reflections as a function of reciprocal 
Bragg spacing, v - 2 sin 0/2. Sampling of the reflection profile at 
given intervals produces the ripple effect for plots with the larger 
reciprocal spacings. Note that crystal size and counter resolution 
effects have not been applied in this case. 

Comparison of calculated spot shape with experimental 
data 

In neutron crys ta l lography the background from a 
hydrogen-conta in ing protein crystal is very high com- 
pared with coherent  diffraction intensities. While the 
number  of  very strong reflections is small, there are 
many  that  can be used to check the validity of  the 
spot-shape calculat ion described above. To compare  
reflection shapes, the inclination angles fl and the axial 
widths are determined and compared to observed 
reflections. For  proteins, no strong reflections are, 
however, observed at higher angles, and data  f rom a 
perfect germanium and other crystals were used to 
check this approach  (Table 1). These tests show that  
the described spot-shape calculation agrees well with 
experimental  data,  and shape parameters  are accurate  
in most  cases to within the spacing of  one array 
element. These shape parameters  can then be used to 
define the area of  integration to the actual extent of  a 
reflection, minimizing the variance of  the peak in- 
tegration and also reducing reflection overlap. The way 
the diffraction condit ions interact to produce the 
observed spot shapes is easily discerned from Figs. 5 
and 8. These drawings show that  A2 and counter  
resolution account  for most  of  the peak broadening in 
the presently used setup. The effect of  changes in beam 
geometry on peak shapes can directly be tested by the 
described procedure.  It is thus possible to optimize 
diffraction condit ions for high flux and good peak- 
to-background ratios. 

Data collection and processing strategy 

The crystal  is mounted  so that  reciprocal-lattice planes 
with the highest reflection density lie in the equatorial  
plane, which is also the direction having the highest 
counter  resolutions (Cain, Norvell & Schoenborn ,  
1975). The crystal is then rotated in discrete steps 
(~0 .05  °) through m, which is the axis perpendicular  to 
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the beam. The 09--20 coordinates of reflections hkl are 
calculated from the crystal orientation matrix for 
reflections that fall on the detector. The unit-cell 
dimensions and the detector characteristics determine 
the spatial resolution and fix the crystal-to-detector 
distance, which for a medium-size protein is typically 
60 to 100 cm. With a detection area of 20 x 20 cm an 
acceptance angle of ~18 ° is possible, permitting 
observations of many simultaneous reflections, depend- 
ing on the overall 20 and 2 settings. For the duration of 
every co step (~60 s), the whole counter is mapped into 
a direct addressable external memory. At the end of 
every step and for every active reflection, a counter 
region Ay (height) and A20 is extracted and is stored 
separately as a function of co. A reflection is represen- 
ted, therefore, as a three-dimensional data array 
centered on 20~k t, Yhkl, (l)hkl" This array is also stored on 
disk for further processing, as described below. 

The best peak-to-background ratio is achieved by 
delineating the reflection as a three-dimensional ellip- 
soid. In practice, however, this is very time consuming 
for on-line integration. The reflection is, therefore, 
summed over Ay to produce a two-dimensional profile 
in 09-20, which is then integrated after delineation of 
the reflection according to precalculated spot-shape 
parameters as described above. The height Ay of 
reflections can be determined from similar calculations 
but is best estimated from the observed size of a few 
strong reflections since changes in Ay are small and 
monotonic. 

For strong reflections the center of mass is deter- 
mined after background subtraction to monitor the 
crystal alignment and the counter electronics. Note that 
the position readout of a well-adjusted counter is, 
however, linear and stable over many months, with a 
positional reproducibility better than 0.5%. The orien- 
tation of strong reflection within this 0>-20 array is then 
determined to check on the precalculated orientation 
parameters. The observed as well as the precalculated 
spot-shape parameters are stored as a function of 
2 sin 0/2 and layer-line height (r). 

Areas outside of the delineated reflections are used 
as background. The background information may be ac- 
cumulated for given regions of reciprocal-lattice volume 
to improve the counting statistics. Background is, 
therefore, averaged for a number of reflections (~ 100). 
Reflections with backgrounds showing large deviations 
from their group average are eliminated and marked. 

Since reflections collected at the beginning suffer from 
lack of background accumulation, a second cycle of 
integration is beneficial using the accumulated back- 
ground from the whole data set. The integration of 
reflections as described above minimizes the area of 
peak integration and, compared to the usual channel 
summation technique, reduced the statistical error (tr) 
by ~ for a myoglobin data set (Schoenborn, 1983). 
Usage of the described background table further 
reduces the a of reflections by 3. 
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prior to publication. The author wishes to thank Dr D. 
Schneider for a critical review of this paper and Mary 
Rustad for help in the preparation of the manuscript. 
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